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1 The method of fractional event counting

The Banff 2a discovery challenge problems are analysed using the method of fractional event counting
[1]. Weights are assigned for a mark x, where the weights are given by

w(x) =
S0(x)

D(x)
− k1

∑
m

Am

σSB
m (x)

D(x)
− k2

∑
m

Bm

σB
m(x)

D(x)
, where (1)

D(x) = k1(S0(x) + B0(x) + σS
unc(x)2 + σB

unc(x)2) + k2(B0(x) + σB
unc(x)2), (2)

Am =

∫
S0(ξ)σ

SB
m (ξ)

D(ξ)
dξ − k1

∑
i

Ai

∫
σSB

i (ξ)σSB
m (ξ)

D(ξ)
dξ − k2

∑
i

Bi

∫
σB

i (ξ)σSB
m (ξ)

D(ξ)
dξ, (3)

Bm =

∫
S0(ξ)σ

B
m(ξ)

D(ξ)
dξ − k1

∑
i

Ai

∫
σSB

i (ξ)σB
m(ξ)

D(ξ)
dξ − k2

∑
i

Bi

∫
σB

i (ξ)σB
m(ξ)

D(ξ)
dξ. (4)

Here, S0(x) and B0(x) are the signal and background densities, respectively, in absence of systematic
uncertainties. The constants k1 and k2 are discussed in detail in [1]. For the Banff challenge, k1 = 1
and k2 = 1 are used. The coefficients Am and Bm are related to the systematic uncertainties and
are obtained by solving the set of linear equations given above. The ξ integrals run over all valid
marks. The systematic uncertainties from a source m are described by variations of the signal and
background densities. The background density variation has the amplitude σB

m(x). The density for
signal-plus-background is varied with amplitude σSB

m (x). The resulting background and signal-plus-
background densities are given by

B(x) = B0(x) +
∑
m

fmσB
m(x), (5)

S(x) + B(x) = S0(x) + B0(x) +
∑
m

fmσSB
m (x), (6)

where the fm are nuisance parameters drawn from Gaussians with mean zero and width one. The
Gaussians may be truncated in order to obtain positive densities B(x) and S(x) + B(x). The effect
of truncating is not included in the definition of the weights w(x).

In many cases the signal and background densities are not given in analytic form and only Monte
Carlo experiments are available. The marks are then grouped into bins. For each bin there may be
a bin-to-bin uncorrelated (statistical) error. These uncertainties enter as σB

unc(x) and σS
unc(x), for

the background and signal shapes, respectively. For unbinned tests, σB
unc = σS

unc(x) = 0.
Finally, for a given experiment, the weights are summed to obtain the test statistics X :

X =
∑

i

w(xi). (7)
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The sum runs over all marks xi observed in a single experiment.
For binned experiments, the marks are grouped into bins k with multiplicity Nk and bin weight

wk. The test statistics is then given by

Xbinned =
∑

k

Nkwk, (8)

and the integrals given above simplify to sums over bins, for example
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2 Testing

For testing a single experiment, its p-value is calculated. The test statistics is calculated for the
data, Xdata, and, repeatedly, for a sample of background experiments, calculated with Monte Carlo
techniques. The p-value is given by

p =
N(XB ≥ Xdata)

N0

, (10)

where N0 is the total number of background experiments and N(XB ≥ Xdata) is the number of
background experiments with XB ≥ Xdata. A positive decision is taken if p < αl, where αl is the
type 1 error.

3 Testing with unknown signal rate

In case of the Banff 2a challenge, the signal rates are not known. The signal S0(x) and the systematic
errors take the form

S0(x) = rS̃0(x), (11)

σS
unc(x) = rσ̃S

unc(x), (12)

σSB
m (x) = rσ̃S

m(x) + σB
m(x). (13)

where r is a nuisance parameter controlling the signal rate. For testing, the parameter r = rtest and
a threshold Xcut are adjusted such that

Xcut − 〈XB〉 = 〈XSB − XB〉 and (14)

N(XB > Xcut)) = αlN0. (15)

(16)

The average values of the test statistics in absence of a signal 〈XB〉 or in presence of a signal 〈XSB〉
depend on the choice of r through the definition of the event weights. They are calculated as

〈XB〉 =

∫
B0(ξ)w(ξ)dξ, (17)

〈XSB − XB〉 =

∫
S0(ξ)w(ξ)dξ. (18)

It should be noted that this calculation neglects the effects of possibly truncated (asymmetric around
S0 or B0) systematic uncertainties.
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The test is performed by fixing the rate rtest and deciding on the basis of the p-value as described
above. For a positive decision, the signal rate and a confidence interval are estimated by solving

Xdata − 〈XB〉 + ∆ = 〈XSB − XB〉. (19)

for r, using certain choices of ∆. First, ∆ is set to zero and an initial rate estimate r0 is calculated.
This rate estimate is biased, because the p-value requirement preferentially selects signal experiments
with high Xdata. A bias-corrected signal parameter r is estimated from equation 19 with ∆ = ∆bias

and Xr0

cut defined as

∆bias =
r

r0

(〈XSB(r0)〉 − 〈XSB(r0)〉X≥X
r0

cut

), (20)

N(XB > Xr0

cut) = αlN0. (21)

Here, the average XSB is evaluated using signal-plus-background Monte Carlo events, once with and
once without cutting events below Xr0

cut. Finally, a 68% confidence level [r−; r+] is evaluated again
using formula 19 with

∆± =
r±

r
(∆bias ± RMS(XSB)). (22)

4 Testing with unknown parameter E

In case of the Banff 2a challenge, problem 1, in addition to the unknown signal rate, the parameter
E is not known and shall be estimated. This is solved by scanning the parameter E in fine steps.
Because the weight w(x) suppresses contributions far from the signal peak, the “local” type 1 error
rate αl (for one scan point) needs to be adjusted, in order to match a given type 1 error for the full
scan.

First, the rate rtest(E) is determined for each scan point E, as described above. The local type1
error αl is adjusted using background Monte Carlo (MC) experiments: for each MC event a scan of
the parameter E is performed, and the MC event is flagged if it is accepted as signal for any of the
scan points. The global type 1 error is determined by counting the fraction of experiments which
have been flagged. The local type 1 error is altered and the test is repeated until the desired global
type 1 error is reached.

Finally, the data experiment is scanned, using the parameter αl and the rate parameters rtest(E).
In case of a positive decision, the properties of E are estimated: for each scan point E the significance

s(E) =
Xdata − 〈XB〉

RMS(XB)
(23)

is determined. The function s(E) is approximated by a spline, and the maximum is determined. The
68% confidence level is estimated by determining the points where s(E) changes by −1/2. Finally,
after adjusting E, the signal rate and its confidence level are estimated as discussed above.

5 Results

Problem 1 is analysed once in 75 bins of the mark and once with an unbinned test. For the scan in
E a total of 100 equidistant points are used. Problem 2 is analysed once in in 25 bins and once in
50 bins of the mark.

The fraction of signal events accepted by the algorithm is tested using 10000 signal-plus-background
experiments. The results are summarised in table 1 for problem 1 and in table 2 for problem 2. The
fraction of events where the estimated confidence interval contains the true value of the parameter
is also given.

For problem 1, using 75 bins and (D, E) = (1010, 0.1), a fraction of 37% is identified as signal.
For (D, E) = (137, 0.5) the fraction is 48% and for (D, E) = (18, 0.9) it is 20%. The 68% confidence
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Using 75 bins in the mark
total events p < αl E inside CL interval D inside CL interval

(D, E) = (1010, 0.1) 10000 3727 3178 (85%) 2550 (68%)
(D, E) = (137, 0.5) 10000 4779 4015 (84%) 3492 (73%)
(D, E) = (18, 0.9) 10000 1971 1005 (51%) 1153 (58%)

Unbinned test
total events p < αl E inside CL interval D inside CL interval

(D, E) = (1010, 0.1) 10000 3913 3316 (85%) 2373 (61%)
(D, E) = (137, 0.5) 10000 4712 3951 (84%) 2878 (61%)
(D, E) = (18, 0.9) 10000 1971 908 (46%) 1210 (61%)

Table 1: Results of the Banff 2a challenge, problem 1.

Using 25 bins in the mark
total events p < αl r inside 68% CL interval

rate r = 25 10000 1229 748 (61%)
rate r = 50 10000 4971 3866 (78%)
rate r = 75 10000 8540 5849 (68%)
rate r = 100 10000 9811 6466 (66%)

Using 50 bins in the mark
total events p < αl r inside 68% CL interval

rate r = 25 10000 1281 745 (58%)
rate r = 50 10000 4912 3823 (78%)
rate r = 75 10000 8522 5782 (68%)
rate r = 100 10000 9792 6434 (66%)

Table 2: Results of the Banff 2a challenge, problem 2.

levels in E are not defined very well. Obviously the simple algorithm of estimating the confidence
interval from the significance function is not satisfactory. The confidence levels in D are surprisingly
good, given the simplistic ansatz for the bias correction. The results obtained for problem 1 with
an unbinned test are rather similar to the binned case.

For problem 2, using 25 bins and a rate of 75 events, 85% of the events are found as signal.
Again, the algorithm to define the confidence level in the rate seems to work reasonably well. Using
50 instead of 25 bins does not change the results significantly.

6 Output files format

The Banff 2a challenge experiments have been analysed. For problem 1 (p1binned bias1 test.vec

and p1unbinned bias1 test.vec), the lines of the output files have the format:
pval dec e e0 e1 d0 d1

where pval is the minimum p-value found while scanning the parameter E, dec is one if a positive
decision is taken and zero otherwise. For a positive decision, e is the best guess of the parameter
E, e0 and e1 define the estimated 68% CL interval for E. Finally, d0 and d1 define the estimated
68% CL interval for the parameter D. In case of a negative decision, the variables related to D and
E are set to zero.

For problem 2 (p2 25bins bias1 test.vec and p2 50bins bias1 test.vec), each line of the
output file is formatted as:

pval dec r r0 r1
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Here, pval is the p-value, dec is one if a positive decision is taken and zero otherwise, r is the
best guess of the signal rate, r0 and r1 define the 68% CL interval.

7 Software overview

The algorithms are implemented in C++, using the Root package. For binned tests, the user supplies
the signal and background shapes, as well as systematic uncertainties in the form of Root histograms.
The nuisances (systematic uncertainties) act on the normalisation of the histograms. For cases where
the signal shape depends on nuisances, a method to generate the signal shape histogram for a given
set of nuisances has to be implemented in addition.

For unbinned tests, the signal and background shapes as well as systematic uncertainties are
provided as Root TF1 functions of the mark, the parameters taken from the nuisances. In addition to
providing these functions, methods to generate signal and background events have to be implemented
for the unbinned case.

The software is available here:
www.desy.de/~sschmitt/Banff2aChallenge/Banff2aChallengeSschmitt.tgz
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